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At least four wavy instabilities are found numerically by analysing the linear 
stability of Taylor-vortex flow (TVF) in the limit of a small gap between two 
concentric cylinders which rotate differentially in the same direction. Two of the 
wavy instabilities, including the one leading to conventional wavy vortex (WVF), 
have the same axial wavelength as TVF at the onset of instability, while the other 
two are characterized by subharmonic modes with axial wavelengths twice as long 
as those of TVF. The two subharmonic instabilities appear to correspond to the 
wavy-inflow-boundary flow (WIB) and the wavy-outflow-boundary flow (WOB) 
observed in the experiment of Andereck, Liu & Swinney (1986). The phase velocities, 
measured in the rotating frame of reference, of all the wavy instabilities are non-zero 
at the onset except that  the phase velocity of WVF vanishes in the region where the 
average rotation rate Q of the cylinders is small. By using this simple bifurcation 
property of WVF for small Q, time-independent finite-amplitude non-axisymmetric 
solution branches bifurcating from TVF are followed numerically. The most 
interesting findings are that some of the solution branches cross the line 52 = 0, 
producing three-dimensional nonlinear solutions in plane Couette flow. 

1. Introduction 
It is well known that a circular Couette system is one of the most suitable systems 

for examining bifurcation mechanisms in fluid motions, both experimentally and 
theoretically. In  recent years, particular attention has been paid to the case where 
both the inner and outer cylinders rotate independently in the same direction. After 
the experimental discovery of five new flows in the case with corotating cylinders by 
Andereck, Dickmann & Swinney (1983), who used an apparatus with an aspect ratio 
r = 30 and with a radius ratio q = 0.883, Nagata (1986) obtained numerically two 
different types of non-axisymmetric solutions bifurcating from Taylor-vortex flow 
(TVF) by applying periodic conditions in the axial direction. Since Nagata (1986, to 
be referred by I hereinafter) treated the problem in the limit of a narrow gap and a 
small angular velocity difference between the cylinders, the best agreement with the 
experiments was expected in the region close to  the Rayleigh line, which implies the 
stability boundary for circular Couette flow of inviscid fluid. In fact, one of the types 
of finite-amplitude solutions found in I appears to be the twisted Taylor-vortex flows 
(TTF) of the experiment of Andereck et al. (1983), although the experimental 
counterpart of the other type is not known. Let us note that very recently Iooss 
(1986) showed mathematically how the newly observed flows, such as wavy vortex 
flow (WVF), TTV, wavy inflow boundary (WIB) and wavy outflow boundary 
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(WOB), resulted from symmetry-breaking phenomena when they bifurcated from 
TVF. His amplitude expansion procedure was based on the symmetry structure each 
flow possesses. 

Since all the five new flows observed in the experiment manifested themselves in 
the vicinity of the Rayleigh line, the investigation in I was concentrated on cases for 
which Q/W is close to the Rayleigh line given by Q/B = 1,  where 9, the Reynolds 
number, represents the shear strength between the cylinders and Q, the Coriolis 
parameter, measures the average rotation rate of the system (for the definitions of 9 
and S Z ,  see I (6) and I (7), where the prefix I refers to the paper I). Here, encouraged 
by the more comprehensive survey of the circular Couette system with corotating 
cylinders recently performed by Andereck, Liu & Swinney (1986) for a wider range 
of parameter space, the linear stability analysis on TVF is attempted in the case 
where SZ/W is not necessarily close to 1 by using the computational codes which were 
used in I. Obviously, the assumption employed in I in order to justify the use of the 
rectangular coordinate system is not necessarily well founded in the present 
investigation, especially when Q/W is very small, for the assumption implies that 

a D 2(1-q) -a==- 
9 R l + q  ' 

where D and R are the dimensional gap and mean radius of the cylinders.? 
Nevertheless, in the region far from the Rayleigh line Q/W = 1,  the onsets of the 

four wavy instabilities, to be described in detail in the following sections, agree quite 
well with the experimental observations. In  order to provide some evidence for 
numerical convergence, results for two successive truncation levels (14) with m = 0 
are compared in figure 1. The number of finite-amplitude components of TVF and 
the number of infinitesimal perturbation modes superimposed on TVF are 38 and 128 
for (N,,Nk) = (8,6), while they are 56 and 198, respectively, for (N,,Nk) = (10,7), 
in general. The number of infinitesimal perturbation modes can be approximately 
halved when one of the symmetries described in detail in I and briefly in the next 
section is not lost. In  spite of the fact that Q/W is not necessarily close to 1 ,  the 
agreement with the experimental observations is satisfactory for ( N T ,  N&) = (10 ,7)  
as is seen in figure 2.  

f In  terms of the inner- and outer-cylinder Reynolds numbers Bi and 9, defined by Andereck 
et al. (1983), the Rayleigh line is given by 

Bil9, = 9(3--) / (3!7-  1) 

and the assumption mentioned above is equivalent to 

( ~ i / = % + ! 7 ) / ( ~ , / ~ o - ! l )  B 1. 

The inequality is well satisfied only when 9 , / W ,  = q+ A (0 < A + i ) ,  which differs only slightly 
from the Rayleigh line BJ9, = 1 +S when the gap is smal1,'i.e. S = 1 - q  + 1 .  
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FIGURE 1.  The comparison of the onset of the four wavy instabilities between two successive 
truncation levels (NT, WT) = (8 ,6)  indicated by dashed lines and (N , ,N&)  = (10,7)  indicated by 
solid lines. In each case two end points, where the values of d and w are indicated, are simply 
connected by a straight line. The neutral curve T = T, is shown as a thin curve whereas the 
Rayleigh line T = 0 is indicated by a thin straight line. 

2. The basic symmetry of the problem 

with a narrow gap is governed by 
The motion of a viscous incompressible fluid between almost corotating cylinders 

V4A, # = 52 a, A ,  @ + ( - R x  + V )  ay V'A, # - - 9 x  + V )  ay A, 4 
+t.v x v  x [ u ' . ~ u ' ] + a ~ v ~ ~ ~ ~ ,  ( 2 4  

V2A , @ = - 52 a, A ,  # + ( - RX + V )  ay A ,  @ - a,( - RX + 8 )  a, A ,  # 
-i"*V x [u'*Vu']+a, A ,  @, (2b)  

a, V-a;,  V = a , A , # ( a ; , # + a , + ) ,  (2c)  

where A ,  = ai,+az, and the bar denotes a yz-average (see I (13)). The scalars # and 
@ are the poloidal and toroidal parts, respectively, of a solenoidal velocity 
disturbance 6, whereas denotes the modification of the mean flow from the circular 
Couette solution V = - R x .  Thus, the total velocity u is given by 

u = ( - B x +  V ) j + V  x (V x f#) +v x f??, (3) 
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FIGURE 2.  The stability diagram of TVF. The onset of time-independent instabilities are shown by 
solid curves, whereas the onset of time-dependent instabilities are shown by either dashed curves 
(WVF1 and WVF2) or dash-dotted curves (SUBL and SUBH). 0, WVF; x ,  WOB; 0, WIB; a, 
TTV, observed by Andereck et al. (1986). 

where the unit vectors i a n d j  correspond to the radial direction x and the azimuthal 
direction y, respectively. The prescribed no-slip boundary conditions a t  x = 
are " 

$ = a , $ = + =  v=o.  (4) 

Assuming infinite extent in the axial direction z, we first seek an axisymmetric 
finite-amplitude solution of the form 

m c a  

4 = C C a,,e'"Yzfi(x), 

II. = C C blneinyZgZ(x), 

Z = 1  n=-m 

m c a  

2-1 n=-m 

m 

= C ck sinBkxx, 
k=l 

where fZ and gZ are the sets of orthogonal functions (see I (23) )  satisfying (4). 
The solution, called Taylor-vortex flow (TVF), is steady with respect to a frame 
of reference rotating with the angular velocity 52 and is known to bifur- 
cate supercritically from the circular Couette flow when the Taylor number 
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T = Q(B-0)  = 1708 with an axial wavenumber y = 3.117. Only the case with 
y = 3.117 will be considered. 

Because of the assumption of a narrow gap between almost corotating cylinders, 
the system (2) has a special symmetry property of invariance with respect to the 
point symmetry on the horizontal plane, 

&u(x,y,z) = [-u(--, -y,z), -v(--x, -y,z),w(-x, -y,2)1, F a )  
in addition to the ordinary symmetry property which the circular Couette system 
usually has. They are the property of invariance under translations along the axial 
direction 2, reflections through the horizontal plane, and rotations about the z-axis 
and are expressed in terms of Iooss’ (1986) notation as follows: 

7 p ( x > Y J )  = u(x ,  y,z+C), (6b) 

Su(x,  y, z )  = [u(x,  y, - z ) ,  V ( Z ,  y, - 4 ,  -w(x,  y, -q1, (6,) 

R, 4 x ,  y, 2) = 4 x 3  y + 7,  z ) .  ( 6 4  

Q q O  = a0, T ~ ~ , ~ % , ,  = 4?L0, R7@, = @o, S@O = @O. (7) 

The TVF q0 (see I ( 2 7 ) )  has the following properties: 

3. Linear stability analysis 
Having obtained TVF solutions by a Galerkin method for the truncated system of 

nonlinear algebraic equations for a,,, b,, and ck, derived from (2), stability analysis is 
performed by superimposing general three-dimensional perturbations on the TVF 
solutions. The perturbations 6 and $ have the same periodicity as that  of TVF in the 
axial direction with additional exponential dependences on y, z and t : 

0 0 w  

6 = C 

$ = C C &,einyrg,(x) expi(dy+bz)+at. (8 b) 

C d,, einyzfi(x) exp i(dy+ bz) +at, @ a )  
1=1 n=-w 

w w  

I=1 n=-w 

After orthogonalizing the equations, the resulting eigenvalue problem with a as the 
time growth rate is solved numerically for each pair of Floquet parameters d and b 
by the matrix inversion method. 

The growth rates a with the biggest real part are listed for the typical parameter 
values 9 = 600 and 52 = 240 in table 1. Several things should be noted about the 
table. First, perturbations are separated into two classes &I and &II (see I (33a, b)) 
only when b = 0. For b + 0, perturbations belonging to different classes interact with 
each other through TVF of the class Secondly, IT in table 1 as a function of d and 
b is smooth only locally, because different modes may be associated with the 
eigenvalue a with the biggest real part for different values of d and b. Thirdly, 
discrepancies between the values of a a t  b = y and a with a bigger real part at 
b = 0 are due to the finite truncation level. For an infinite truncation level, a must 
be strictly periodic in b with period y. As a matter of fact, these discrepancies serve 
as a tool for checking the accuracy with respect to the truncation level. They seem to 
be small enough at  the truncation level ( N , , N k )  = (10,7) as shown in table 1 and 
calculations are performed all through this section using this truncation level. Lastly 
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d\b 

0 

1 .o 

2.0 

3.0 

4.0 

5.0 

6.0 

Class 

... 

-20.00, 
f226.6 

-37.71, 
f 157.2 

-37.80, 
f 116.4 

-21.65, 
0 

-4.97, 
0 

- 19.78, 
0 

- 49.12, 
0 

01 

0 

0, 
0 

- 19.29, 
f137.0 

- 4 1.66, 
- + 357.8 

-67.22, 
f 69.8 

-78.89, 
- f 4 . 4  

- 60.50, 
0 

-97.42, 
f11 .3  

0 1 1  

0.779 

- 1.76, 
0 

-8.15, 
- + 143.5 

- 35.75, 
372.9 

-40.23, 
1-249.6 

- 10.91, 
0 

-23.79, 
0 

-52.66, 
0 

1.559 

-5.67, 
0 

0.95, 
& 147.9 

- 29.42, 
f 383.9 

-26.92, 
f 361.6 

-22.93, 
k 7.9 

- 34.48, 
f0.6 

-63.00, 
k 1 . 2  

2.338 

-0.90, 
0 

- 3.79, 
& 143.8 

- 39.49, 
& 375.5 

- 37.85, 
0 

-8.44, 
0 

-22.67, 
0 

-52.36, 
0 

3.1 17 

-2.17, 
0 

- 19.95, 
f 139.2 

-37.63, 
f 116.2 

-21.00, 
0 

-3.91, 
0 

- 19.07, 
0 

-48.72, 
0 

0, + o,, 
TABLE 1 .  The growth rate a as a function of the Floquet parameters d and b. The second figure in 
each pair corresponds to the frequency o = Im[a] for the eigenvalue with the biggest real part 
indicated by the first figure. R = 600, R = 240. 

perturbations with d = b = 0 must have zero growth rate, because the special 

correspond to an infinitesimal translation of TVF q5, $ in the z-direction and thus are 
solutions of the stability equations. From the expression of the class a0 for TVF and 
differentiation of q5 or $ by z ,  it is clear that perturbations in class are responsible 
for this translation instability. 

Two local peaks can be recognized in table 1 :  one a t  6 = ~, d = 1 which will be 
discussed in $3.1 and the other at b = 0, d = 4 from the class %I. The latter is related 
to the twisted Taylor-vortex flow reported in I, although the peak is negative for the 
particular parameter values chosen for table 1 .  The classes &I and gII satisfy 

respectively (see Iooss 1986, p. 252). 

3.1.  Subharmonic instabilities 

Wavy instabilities with a subharmonic mode were first detected numerically by 
Jones (1985) in the case with the outer cylinder at' rest by setting the wavelength of 
perturbations equal to an integer multiple of that of the axisymmetric TVF. Here, 
instead of expecting a subharmonic instability a priori, the growth rate u is 
evaluated by regarding it as a continuous function of d and b. As a result, a 
subharmonic instability is actually found a t  b = i y  as seen in table 1 ,  although table 
1 exhibits u only a t  selected values of d and 6 .  The peak cr = (4.83+_ 143.41) on 
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b = b occurs at d = 1.23 when W = 600 and 52 = 240. This subharmonic instability 
(SUBL) bounds the stability region of T V F  from the right in the (52, B)-plane, almost 
without any change in the critical value of i2 (205 < 52 < 230) a t  the onset of 
instability when W > 530, as seen in figure 2. For  W < 530, the instability in the class 
4& associated with TTV becomes dominant. Along the curve of onset of SUBL, the 
value of d is almost constant (d  x l .2) ,  while the frequency w = I m  [c] varies from 
120 at  the bottom of the curve around B = 510 to 210 at  B = 1200. 

It is found that when W z 1200 two additional subharmonic instabilities appear. 
Only one of them, which occurs a t  52 = 220, is shown in both figure 1 and figure 2, 
since the other subharmonic instability that appears a t  SZ = 270 intersects the curve 
of onset of SUBL a t  a higher value of 9. In  contrast to the relatively low frequencies, 
o x 200, associated with SUBL, the new subharmonic instability SUBH has higher 
frequencies (w x 750). Along the curve of onset of SUBH, the value of d is almost 
unchanged (d  x 1.1) as well and is close to d = 1.2 for SUBL. 

The comparison with the experimental observations by Andereck et al. (1986) 
illustrated in figure 3 indicates that the two subharmonic instabilities SUBL and 
SUBH correspond to WOB and WIB, respectively, although the curve of onset of 
SUBH is slightly tilted backward towards the line SZ = 0 for higher g. It is found 
that the values of d for SUBL and SUBH are consistent with the observed waves 
( M  = I1 - 14) around cylinders by the relation (I (40)) 

M D  
R 

p = - = 0 .12w.  

It might be thought that by expressing einyz eibz in trigonometric functions, 
subharmonic perturbation modes could be represented by the following two 

and 

where n+ denotes an odd integer, and fa and f ,  represent antisymmetric and 
symmetric functions in x, respectively. Knowing that the class 4Yo for T V F  could be 

where TL++ stands for an even integer, one would imagine, with a necessary translation 
in z ,  that  the two classes could be distinguished by the property that the wavy 
boundaries between vortices would coincide with either the inflow or the outjflow 
boundaries of TVF,  since the axial component of the velocity, w, is given by 
a;,$-a,@ so that one boundary would be flat and the other would always be 
wavy. Actually, the subharmonic classes &(i) and &@) satisfy relations 

so@i) = @i), ' ~ y  @i) = -o@i), (12a)  

(13 6 )  

which are used in the definitions for WIB and WOB by Iooss (1986). However, the 
perturbation modes are separable only for b = 0, and not, as one might think, for 
b = b. The two classes, @(i) and d@), represent the same solution because of the 

so@ii) = - o@i), 72n,y @(ii) = - ojj(ii) 
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symmetry property (6a)  which the present problem possesses in the particular limit 
considered. The subharmonic instabilities are associated with a pitchfork bifurcation. 
Curvature is required in order to break the symmetry and locally transform the 
bifurcation picture into one with a transcritical bifurcation a t  the bifurcation point. 
Nonlinear analysis cannot resolve the inseparability of the subharmonic instabilities. 
The situation is similar to the problem of Boussinesq convection, where the inclusion 
of the second volume expansion coefficient only enables the separation of the 
l-hexagon and g-hexagon solutions (Busse 1978). 

3.2. Wuvy vortex flows 

Two instabilities with Im [g] =I= 0, classified as WVFl and WVF2 in figure 2 are found 
on b = 0. In  contrast to TTV, described in I, perturbations in the class &ll are 
responsible for the instabilities. Hence both WVFl and WVF2 have not only wavy 
inflow but also wavy outflow boundaries and they propagate their wavy patterns in 
the azimuthal direction without changing their axial wavelengths when they 
bifurcate from TVF. 

WVF2 is characterized by rather high frequencies (w % 400) and bounds the 
stability region of TVF from above in the (Q, &!-plane (see figure 2). The other wavy 
instability WVFI , described by relatively low frequencies, bounds the stable TVF 
from the region where Q is small. Although WVFl and WVF2 are clearly 
distinguished by the value of d a t  the onset of instability in addition to their distinct 
frequency diEerences, it is not possible to pinpoint a local maximum of the growth 
rate u as a function of d for W 2 1100 because of the presence of several unstable 
modes in the class The exact values of d at which the peak of u occurs are 
required in order to interpolate the stability boundaries for TVF on which Re [a] 
changes signs. 

A typical graph of Re[a] as a function of Q is depicted in figure 3 for the low- 
frequency wavy instability WVF1. It is seen that the Hopf bifurcation point a t  
Q = QH and the simple bifurcation point at Q = 52, on the lower real eigenvalue 
branch are very close in the figure. As W is decreased from 600, the whole graph is 
shifted downward, making the distance between Q, and Q, much smaller. 
Consequently, the frequency w = Im [a] a t  Q = Q, approaches zero until the simple 
bifurcation moves on to the upper real eigenvalue branch a t  W - 550, leaving the 
branching point, where the complex-conjugate eigenvalues change into two real 
eigenvalues, beneath the line of zero growth rate. Therefore, the transition from TVF 
is time-independent or time-dependent according to whether W < 550 or W > 550. At 
Q = Q,, where TVF bifurcates supercritically from a circular Couette flow, the 
eigenvalues on the upper and the lower real eigenvalue branches are both negative. 
Hence, there is a small interval between 52 = 0, and another simple bifurcation point 
at 52 = Q,, where TVF is stable with respect to infinitesimal perturbations. 

The comparison with the experiments of Andereck et al. (1986) shows that WVFl 
corresponds to  the conventional WVF (see figure 2). They also give the linear 
relation between the angular velocity of the wavy patterns and the rotation ratio 
Q,/52, = qWo/Wi of the cylinders. By using the transformation formulas I 39a, b ) ,  
the line 9 , /Wi  = 1/K ( K :  constant) is mapped into the line 

l K - - q l + q a  g=--- 
2 K f q l - - q  

in the (Q, 9)-plane. Since the curve of onset of WVFl makes some angle with lines 
of 9/Q = constant when Im [a] + 0, the point on the curve with larger 92 corresponds 
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I '  

FIGURE 3. The growth rate Re [a] as a function of 52. Solid curves and dashed curves indicate that 
the eigenvalue (r is real or complex conjugate, respectively. Thick and thin curves correspond to 
( N T , N k )  = (10,i') and (8,6), respectively. W = 600, d = 0.6. The two-dimensional per- 
turbation (d = 0) superimposed on the unidirectional circular Couette flow has the maximum 
growth rate for 0 < B < Q,, indicated by a dotted line. 

to smaller K .  The tendency that Im [CT] becomes smaller as 92 decreases is consistent 
with their observations. Also, the value of d a t  the onset of WVFl (0.6 < d < 1.0) is 
compatible with the observed number of waves ( M  - 6) for WVF (see (11)). 

An experimental counterpart of the high-frequency wavy instability WVF2 has 
not been reported. 

4. Nonlinear analysis 
The fact that the TVF has two simple bifurcation points a t  Q = Q, and Q = Q, 

provides encouragement for seeking time-independent finite-amplitude non-axi- 
symmetric solutions bifurcating from TVF a t  each bifurcation point. I n  particular, 
when 92 < 550, a search by numerical methods is expected not to  be influenced by 
time-dependent disturbances because of the suspended Hopf bifurcation. Since 
the growing perturbations took the form of those in the class &II in the linear stability 
analysis, finite-amplitude solutions represented by the class d, are responsible for 
the bifurcation (see Appendix in I).  

I n  order to obtain a solution, initial guesses a t  the numerical solutions are made 
near the bifurcation points so that the guesses are slightly different from TVF 
solutions. The truncation formula I (36), i.e. 

I +  214 + In1 < N,,  k < Nk (14) 



594 M. Nagata 

- 10 - 5  0 Q, 5 a 10 15 

FIGURE 4. The bifurcation picture based on the torque r .  The non-axisymmetric solution branches 
for /3 = 1.0 and p = 2.0 are shown. The axisymmetric TVF, which exists for 52 > R, = 2.86, is 
indicated by a dashed curve. 9 = 600. 

is used because of the existence of the axisymmetric (m = 0) TVF which has been 
already established (Z+lnl < N T )  as a background a t  the bifurcation of non- 
axisymmetric flows. 00 00 

4 = C C C atmn. expi(mpy+ny4fl(4,  

1c. = C C C bzmn exp i ( m p y + n y 4 g l ( 4 ,  

1=1 m=-m n=--a) 
0 0 0 0  00 

1=1 m--co n=-w 
00 

= C ck sin2knz. 
k = l  

The azimuthal wavenumber /3 is set equal to the value of d for the growing 
perturbations, while the axial wavenumber y remains unchanged from its value for 
TVF solutions because b = 0. 

It is found that non-axisymmetric solutions bifurcate supercritically a t  52 = Q,, 
while the bifurcation is subcritical a t  Q = 0,. Although TVF is found to be most 
unstable with respect to perturbations with d = 0.2 at Q = 0, for 9 = 600, 
subcritical solutions with shorter wavelengths can be followed further in the 
direction of negative Q. Solutions with 0.9 < p < 2.1 actually reach the line of plane- 
Couette-flow limit Q = 0 directly when 9 = 600. Figure 4 shows a bifurcation picture 

exerted on the wall of the cylinders for azimuthal wavenumbers ,8 = 1.0 and p = 2.0. 
As solutions approach a turning point, some non-axisymmetric components with 
m =+ 0 become gradually dominant and beyond the turning point the solutions have 
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FIGURE 5. The modification of the mean flow P(r) = -ax+ v(r) .  Solid curves and dashed curves 
indicate the upper and the lower part, respectively, of the three-dimensional solution branch for 
/3 = 2.0 in figure 4. 9 = 600. ( a )  i2 = 5, ( b )  0, (c) -5. 
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different structures as can be seen by the modification of the mean flow in figure 5 .  
Components with higher harmonic indices 1 + ImJ + JnJ normally show decreasing 
orders of magnitude. 

Because of the existence of turning points, multiple solutions belonging to the 
same class d, are possible for fixed SZ. For instance, plane Couette flow on SZ = 0 has 
two and four solutions for p = 2.0 and /3 = 1.0, respectively, when 92 = 600. The 
nonlinear aspects of plane-Couette-flow solutions will be reported in a separate paper 
(Nagata 1988). 

5. Conclusion 
Comparison between the present numerical investigation and the experimental 

observations by Andereck et al. (1986) is made in figure 2. The onsets of the second 
bifurcations are in good agreement, except for the high-frequency wavy vortex flow 
WVF2, where no experimental counterpart is known, The crossing point of the 
curves of onset for the two subharmonic instabilities SUBL and SUBH, where two 
Hopf bifurcations meet, is preceded by this WVF2 instability. The bifurcation of 
WVF2 might be subcritical, and this may be the reason why high-frequency wavy 
vortex flows have not been detected. 

It has already been pointed out that  the use of a rectangular coordinate system to 
solve the narrow-gap problem ( q  -4 1 )  cannot be justified when SZ/W becomes as small 
as D / R  = 2( 1 -q)/(l  +q) z 1-4. Therefore, our analysis can only qualitatively 
describe the various events that occur in the case with the outer cylinder at rest and 
the case of counter-rotating cylinders. The second quadrant in the a,, - gi plane is 
mapped into the narrow region between the lines 

1 l + q  
2 l - q  

9 = +--Q 

in the (0, B)-plane. Nevertheless, the nonlinear analysis attempted in that narrow 
area shows mathematically that some solutions bifurcating at SZ = Q, cross the 
line SZ = Q,, making possible direct three-dimensional bifurcation from the uni- 
directional circular Couette flow. Furthermore, some three-dimensional solutions can 
be traced back into the region of negative Q. In  this region, which corresponds to the 
region below the line W i  = -qWo in the (ao, Wi)-plane, only three-dimensional 
flows such as spirals, wavy spirals and some turbulent structures have been reported 
in the experiments. 

It should be noted that the mathematical formulation of plane Couette flow can 
be retrieved simply by considering the limit of SZ = 0 in our analysis without any 
approximations. All the linear stability analyses for plane Couette flow have 
indicated that the unidirectional flow u = W x f  is stable with respect to infinitesimal 
perturbations with any normal mode at any Reynolds number. Thus, if transitions 
from the laminar flow exist they must be abrupt and the secondary solutions 
resulting from the transition cannot be connected to  the undisturbed solutions for all 
9. The three-dimensional finite-amplitude solutions discovered in the present paper 
for Q = 0 could be regarded as solutions bifurcating from the infinite value of a. A 
simple conjectured bifurcation picture near and on 52 = 0 is provided in figure 6. The 
idea of a bifurcation from infinity was first proposed by Rosenblat & Davis (1979) 
and was suggested by Cowley & Smith (1985) for the mixed problem of plane 
Poiseuille flow and plane Couette flow. But Cowley & Smith's solutions were two- 
dimensional and existed only when the plane-Poiseuille-flow component was 
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/ r = - R  

0 
FIGURE 6. A conjectured bifurcation picture based on the torque T .  The torque of the undisturbed 
flows is given by T = - W. The three-dimensional-solution surface will have more complex structures 
with folds as can be anticipated from its cross-section at W = 600 for ,4 = 1.0 in figure 4. 

dominant. We should also note that Orszag & Kells (1980) demonstrated by their 
numerical experiments on plane Couette flow that artificially created two- 
dimensional disturbances decayed eventually whereas three-dimensional disturb- 
ances sustained their amplitudes. 

The solutions on Q = 0 have already developed three-dimensional structures. 
Therefore, the truncation formula 

l+lml+lnl < N T  

instead of (14) is more appropriate. Numerical work in that direction is in progress 
(Nagata 1988). As an extreme truncation, the approach using the triad interaction 
proposed by Craik (1971) may resolve some basic properties of the stability of plane 
Couette flow. 

For numerical efficiency, only time-independent nonlinear solutions bifurcating 
from TVF were sought. The Galerkin scheme incorporating the phase velocity must 
take into account twice as many components compared with the time-independent 
case considered here. (Because of the non-zero time derivatives, one of the symmetry 
properties is broken.) It is very likely that inflexional flows as seen in figure 5 become 
unstable eventually for higher Reynolds numbers. To examine plausible successive 
time-dependent bifurcations from the steady three-dimensional solution manifolds is 
very interesting, especially for plane Couette flow, although the numerical cost of 
solving an initial-value problem is also expected to be expensive. 
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